Downregulation of Glutamine Synthetase, not glutaminolysis, is responsible for glutamine addiction in Notch1‐driven acute lymphoblastic leukemia
During glutamine sufficiency, both Notch‐positive and Notch‐negative T‐ALL cells promote glutamine catabolism, leading to mammalian target of rapamycin complex 1 (mTORC1) activation and cell growth and proliferation. However, during glutamine scarcity, only Notch‐negative T‐ALL cells can perform a m...
Gespeichert in:
Veröffentlicht in: | Molecular oncology 2021-05, Vol.15 (5), p.1412-1431 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During glutamine sufficiency, both Notch‐positive and Notch‐negative T‐ALL cells promote glutamine catabolism, leading to mammalian target of rapamycin complex 1 (mTORC1) activation and cell growth and proliferation. However, during glutamine scarcity, only Notch‐negative T‐ALL cells can perform a metabolic adaptation by promoting glutamine synthesis. By contrast, Notch‐positive T‐ALL cells maintain glutamine catabolism during glutamine restriction, leading to glutamine addiction and mTORC1 dependency.
The cellular receptor Notch1 is a central regulator of T‐cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T‐cell acute lymphoblastic leukemia (T‐ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T‐ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti‐Notch therapies in T‐ALL models. In this work, we report that Notch1 upregulation in T‐ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1‐driven T‐ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1‐induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1‐driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1‐driven leukemia. |
---|---|
ISSN: | 1574-7891 1878-0261 1878-0261 |
DOI: | 10.1002/1878-0261.12877 |