A SAS Program Combining R Functionalities to Implement Pattern-Mixture Models

Pattern-mixture models have gained considerable interest in recent years. Patternmixture modeling allows the analysis of incomplete longitudinal outcomes under a variety of missingness mechanisms. In this manuscript, we describe a SAS program which combines R functionalities to fit pattern-mixture m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2015-12, Vol.68 (8), p.1-26
Hauptverfasser: Bunouf, Pierre, Molenberghs, Geert, Grouin, Jean-Marie, Thijs, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pattern-mixture models have gained considerable interest in recent years. Patternmixture modeling allows the analysis of incomplete longitudinal outcomes under a variety of missingness mechanisms. In this manuscript, we describe a SAS program which combines R functionalities to fit pattern-mixture models, considering the cases that missingness mechanisms are at random and not at random. Patterns are defined based on missingness at every time point and parameter estimation is based on a full group-bytime interaction. The program implements a multiple imputation method under so-called identifying restrictions. The code is illustrated using data from a placebo-controlled clinical trial. This manuscript and the program are directed to SAS users with minimal knowledge of the R language.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v068.i08