A Review of Metasurfaces for Microwave Energy Transmission and Harvesting in Wireless Powered Networks
Wireless energy transmission and harvesting techniques have recently emerged as attractive solutions to realize wireless powered networks. By eliminating fundamental power constraints arising from the use of conventionally battery sources, wireless modes of energy transmission provide viable means t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.27518-27539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless energy transmission and harvesting techniques have recently emerged as attractive solutions to realize wireless powered networks. By eliminating fundamental power constraints arising from the use of conventionally battery sources, wireless modes of energy transmission provide viable means to power wireless network devices away from the grid. Metasurfaces have emerged as key enablers for the use of microwave energy as a power source. Their unique abilities to tailor electromagnetic waves have motivated significant research interest into their use for power-focused microwave systems. This article provides an overview of progress in the development of metasurface implementations for microwave energy transmitters and energy harvesters. First, the paper provides a basic introduction to metasurfaces, after which it reviews research progress in metasurfaces for microwave energy transmission and harvesting. Also highlighted are key parameters by which the performance of such metasurface designs are characterized. In addition, an overview of studies on metasurfaces as reconfigurable intelligent surfaces in wireless networks supporting the simultaneous transmission of information and energy is presented. Finally, the paper highlights existing challenges, and explores future directions, including opportunities to control radio environments through ambiently energized reconfigurable intelligent surfaces in next-generation wireless networks. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3058151 |