Humans Verification by Adopting Deep Recurrent Fingerphotos Network

يمكن اعتبار صورة الإصبع واحدة من أحدث وأكثر التقنيات البيومترية إثارة للاهتمام. يعني ذلك ببساطة صورة بصمة أصبع يتم الحصول عليها عن طريق هاتف ذكي بطريقة لا تتطلب الاتصال المباشر. يقترح هذا البحث نهجًا جديدًا للتحقق من البشر استنادًا إلى صورة الإصبع الفوتوغرافية. يُطلق عليه اسم شبكة الإصبع الفوتوغرافي...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majallat Baghdād lil-ʻulūm 2024-01, Vol.21 (5(SI)), p.1827
Hauptverfasser: Alabdoo, Islam Nahedh, Yalçınkaya, Mehmet Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:يمكن اعتبار صورة الإصبع واحدة من أحدث وأكثر التقنيات البيومترية إثارة للاهتمام. يعني ذلك ببساطة صورة بصمة أصبع يتم الحصول عليها عن طريق هاتف ذكي بطريقة لا تتطلب الاتصال المباشر. يقترح هذا البحث نهجًا جديدًا للتحقق من البشر استنادًا إلى صورة الإصبع الفوتوغرافية. يُطلق عليه اسم شبكة الإصبع الفوتوغرافية العميقة المتكررة. تتألف من طبقة الإدخال، وسلسلة من الطبقات الخفية، وطبقة الإخراج والتغذية العكسية الاساسية. يعتمد هذا البحث على اخذ صور فوتوغرافية لكافة الاصابع الشخصية بشكل متسلسل. و يتمتع النظام بالقدرة على التبديل بين أوزان كل إصبع فوتوغرافي فردي وتوفير التحقق. تم انشاء قاعدة بينات من عدد كبير من صور الأصابع الفوتوغرافية، وتم تنظيمها وتقسيمها واستخدامها كمجموعة بيانات مفيدة في هذا البحث. تم التوصل الى نتائج عالية في الدقة  في التحقق الشخصي عن طريق استخدام الصور الفوتوغرافية للاصابع. Fingerphoto can be considered as one of recent and interesting biometrics. It basically means a fingerprint image that is acquired by a smartphone in contactless manner. This paper proposes a new Deep Recurrent Learning (DRL) approach for verifying humans based on their fingerphoto image. It is called the Deep Recurrent Fingerphotos Network (DRFN). It compromises of input layer, sequence of hidden layers, output layer and essential feedback. The proposed DRFN sequentially accepts fingerphoto images of all personal fingers. It has the capability to change between the weights of each individual fingerphoto and provide verification. A huge number of fingerphoto images have been acquired, arranged, segmented and utilized as a useful dataset in this paper. It is named the Fingerphoto Images of Ten Fingers (FITF) dataset. Average accuracy result of 99.84 % is obtained for personal verification by exploiting fingerphotos.
ISSN:2078-8665
2411-7986
DOI:10.21123/bsj.2024.10552