Stratified Particle Filter Monocular SLAM

This paper presents a solution to the problem of simultaneous localization and mapping (SLAM), developed from a particle filter, utilizing a monocular camera as its main sensor. It implements a novel sample-weighting idea, based on the of sorting of particles into sets and separating those sets with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2021-08, Vol.13 (16), p.3233, Article 3233
Hauptverfasser: Slowak, Pawel, Kaniewski, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a solution to the problem of simultaneous localization and mapping (SLAM), developed from a particle filter, utilizing a monocular camera as its main sensor. It implements a novel sample-weighting idea, based on the of sorting of particles into sets and separating those sets with an importance-factor offset. The grouping criteria for samples is the number of landmarks correctly matched by a given particle. This results in the stratification of samples and amplifies weighted differences. The proposed system is designed for a UAV, navigating outdoors, with a downward-pointed camera. To evaluate the proposed method, it is compared with different samples-weighting approaches, using simulated and real-world data. The conducted experiments show that the developed SLAM solution is more accurate and robust than other particle-filter methods, as it allows the employment of a smaller number of particles, lowering the overall computational complexity.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13163233