Silencing of SbPPCK1-3 Negatively Affects Development, Stress Responses and Productivity in Sorghum
Phosphoenolpyruvate carboxylase (PEPC) plays central roles in photosynthesis, respiration, amino acid synthesis, and seed development. PEPC is regulated by different post-translational modifications. Between them, the phosphorylation by PEPC-kinase (PEPCk) is widely documented. In this work, we simu...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2023-06, Vol.12 (13), p.2426 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphoenolpyruvate carboxylase (PEPC) plays central roles in photosynthesis, respiration, amino acid synthesis, and seed development. PEPC is regulated by different post-translational modifications. Between them, the phosphorylation by PEPC-kinase (PEPCk) is widely documented. In this work, we simultaneously silenced the three sorghum genes encoding PEPCk (SbPPCK1-3) by RNAi interference, obtaining 12 independent transgenic lines (Ppck1-12 lines), showing different degrees of SbPPCK1-3 silencing. Among them, two T2 homozygous lines (Ppck-2 and Ppck-4) were selected for further evaluation. Expression of SbPPCK1 was reduced by 65% and 83% in Ppck-2 and Ppck-4 illuminated leaves, respectively. Expression of SbPPCK2 was higher in roots and decreased by 50% in Ppck-2 and Ppck-4 in this tissue. Expression of SbPPCK3 was low and highly variable. Despite the incomplete gene silencing, it decreased the degree of phosphorylation of PEPC in illuminated leaves, P-deficient plants, and NaCl-treated plants. Both leaves and seeds of Ppck lines had altered metabolic profiles and a general decrease in amino acid content. In addition, Ppck lines showed delayed flowering, and 20% of Ppck-4 plants did not produce flowers at all. The total amount of seeds was lowered by 50% and 36% in Ppck-2 and Ppck-4 lines, respectively. The quality of seeds was lower in Ppck lines: lower amino acid content, including Lys, and higher phytate content. These data confirm the relevance of the phosphorylation of PEPC in sorghum development, stress responses, yield, and quality of seeds. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants12132426 |