Real-Time Coseismic Displacement Retrieval Based on Temporal Point Positioning with IGS RTS Correction Products
With the rapid development of the global navigation satellite system (GNSS), high-rate GNSS has been widely used for high-precision GNSS coseismic displacement retrieval. In recent decades, relative positioning (RP) and precise point positioning (PPP) are mainly adopted to retrieve coseismic displac...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.334 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the rapid development of the global navigation satellite system (GNSS), high-rate GNSS has been widely used for high-precision GNSS coseismic displacement retrieval. In recent decades, relative positioning (RP) and precise point positioning (PPP) are mainly adopted to retrieve coseismic displacements. However, RP can only obtain relative coseismic displacements with respect to a reference station, which might be subject to quaking during a large seismic event. While PPP needs a long (re)convergence period of tens of minutes. There is no convergence time needed in the variometric approach for displacements analysis standalone engine (VADASE) but the derived displacements are accompanied by a drift. Temporal point positioning (TPP) method adopts temporal-differenced ionosphere-free phase measurements between a reference epoch and the current epoch, and there is almost no drift in the displacement derived from TPP method. Nevertheless, the precise orbit and clock products should be applied in the TPP method. The studies in recent years are almost based on the postprocessing precise orbits and clocks or simulated real-time products. Since 2013, international GNSS service (IGS) has been providing an open-access real-time service (RTS), which consists of orbit, clock and other corrections. In this contribution, we evaluated the performance of real-time coseismic displacement retrieval based on TPP method with IGS RTS correction products. At first, the real-time precise orbit and clock offsets are derived from the RTS correction products. Then, the temporal-differenced ionosphere-free (IF) combinations are formed and adopted as the TPP measurements. By applying real-time precise orbit and clock offsets, the coseismic displacement can be real-timely retrieved based on TPP measurements. To evaluate the accuracy, two experiments including a stationary experiment and an application to an earthquake event were carried out. The former gives an accuracy of 1.8 cm in the horizontal direction and 4.1 cm in the vertical direction during the whole period of 15-min. The latter gives an accuracy of 1.2 cm and 2.4 cm in the horizontal and vertical components, respectively. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21020334 |