A high detail UAS-based 3D model of the Torre Benzalá in Jaén, Spain
The constant development of geomatics tools has driven the opening of their applications to multiple disciplines, including archaeology. The possibility of performing a 3D reconstruction of archaeological remains as well as a semantic classification of the 3D surface facilitates not only a better kn...
Gespeichert in:
Veröffentlicht in: | Heritage science 2022-12, Vol.10 (1), p.203-18, Article 203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The constant development of geomatics tools has driven the opening of their applications to multiple disciplines, including archaeology. The possibility of performing a 3D reconstruction of archaeological remains as well as a semantic classification of the 3D surface facilitates not only a better knowledge of the historical heritage but also an essential aid to the planning and development of restoration and preservation projects of this legacy. Different data exploitation strategies are needed to take advantage of the geospatial data provided by geomatics tools. In this paper, we have studied the current state of conservation of a medieval tower, Torre Benzalá in Jaén, southern Spain. The interesting thing about this study is that very high resolution RGB images, taken by a drone, have been used in order to show the current degree of deterioration of the tower, providing accurate and precise documentation of the current state. Thus, a highly detailed 3D reconstruction of the tower has been carried out. A dense point cloud was generated to obtain a digital elevation model (DEM) to identify and quantify the most critically deteriorated areas. The results are useful for the development of an architectural maintenance and restoration project to preserve this archaeological legacy. |
---|---|
ISSN: | 2050-7445 2050-7445 |
DOI: | 10.1186/s40494-022-00835-x |