AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app

The inability to test at scale has become humanity's Achille's heel in the ongoing war against the COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-based diagnosis of respiratory diseases, we propose, develop and test an Artificial I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatics in medicine unlocked 2020, Vol.20, p.100378-100378, Article 100378
Hauptverfasser: Imran, Ali, Posokhova, Iryna, Qureshi, Haneya N., Masood, Usama, Riaz, Muhammad Sajid, Ali, Kamran, John, Charles N., Hussain, MD Iftikhar, Nabeel, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inability to test at scale has become humanity's Achille's heel in the ongoing war against the COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-based diagnosis of respiratory diseases, we propose, develop and test an Artificial Intelligence (AI)-powered screening solution for COVID-19 infection that is deployable via a smartphone app. The app, named AI4COVID-19 records and sends three 3-s cough sounds to an AI engine running in the cloud, and returns a result within 2 min. Cough is a symptom of over thirty non-COVID-19 related medical conditions. This makes the diagnosis of a COVID-19 infection by cough alone an extremely challenging multidisciplinary problem. We address this problem by investigating the distinctness of pathomorphological alterations in the respiratory system induced by COVID-19 infection when compared to other respiratory infections. To overcome the COVID-19 cough training data shortage we exploit transfer learning. To reduce the misdiagnosis risk stemming from the complex dimensionality of the problem, we leverage a multi-pronged mediator centered risk-averse AI architecture. Results show AI4COVID-19 can distinguish among COVID-19 coughs and several types of non-COVID-19 coughs. The accuracy is promising enough to encourage a large-scale collection of labeled cough data to gauge the generalization capability of AI4COVID-19. AI4COVID-19 is not a clinical grade testing tool. Instead, it offers a screening tool deployable anytime, anywhere, by anyone. It can also be a clinical decision assistance tool used to channel clinical-testing and treatment to those who need it the most, thereby saving more lives.
ISSN:2352-9148
2352-9148
DOI:10.1016/j.imu.2020.100378