CuCo and sulfur doped carbon nitride composite as an effective Fenton-like catalyst in a wide pH range

The heterogeneous Fenton-like reaction, as an advanced oxidation process, is widely recognized attributed to its recyclability, wide pH response range, easy solid-liquid separation, and non-production of iron sludge. Recently, the bimetallic catalysts have attracted intense attention due to their hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in chemistry 2022-08, Vol.10, p.982818-982818
Hauptverfasser: Lin, Feifei, Liu, Peng, Lin, Rundong, Lu, Chen, Shen, Yuanyuan, Wang, Yongqiang, Su, Xiwen, Li, Hongjiang, Gu, Ying-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heterogeneous Fenton-like reaction, as an advanced oxidation process, is widely recognized attributed to its recyclability, wide pH response range, easy solid-liquid separation, and non-production of iron sludge. Recently, the bimetallic catalysts have attracted intense attention due to their high catalytic performance and excellent stability over a wide pH range. In this article, CuCo/SCN bimetallic catalyst was prepared by pyrolysis method with sulfur doped carbon nitride (SCN) as the carrier. Under the conditions of pH = 7, catalyst dosage of 0.8 g/L, and concentration of H 2 O 2 of 15 mM, 20 mg/L of methyl orange (MO) can be completely removed within 1 h. With the synergistic action between bimetals and sulfur doped carbon nitride, the CuCO/SCN involved Fenton-like system exhibited excellent catalytic degradation efficiency and strong stability for MO in neutral and weak alkaline conditions. The EPR characterization proved that OH and O 2 − were the main active components. Furthermore, CuCo/SCN involved Fenton-like system has good adaptability. Bimetallic CuCo/SCN catalyst has great application potential in the degradation of environmental pollutants.
ISSN:2296-2646
2296-2646
DOI:10.3389/fchem.2022.982818