A phase-field study to explore the nature of the morphological instability of Kirkendall voids in complex alloys

The present research explores theoretical and computational aspects of the morphological instability of Kirkendall voids induced by a directed flux of vacancies. A quantitative phase-field model is coupled with a multi-component diffusion model and CALPHAD-type thermodynamic and kinetic databases to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-12, Vol.14 (1), p.30489-17, Article 30489
Hauptverfasser: Riyahi khorasgani, Ahmadreza, Steinbach, Ingo, Camin, Bettina, Kundin, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present research explores theoretical and computational aspects of the morphological instability of Kirkendall voids induced by a directed flux of vacancies. A quantitative phase-field model is coupled with a multi-component diffusion model and CALPHAD-type thermodynamic and kinetic databases to obtain a meso-scale description of Kirkendall void morphologies under isothermal annealing. The material under investigation is a diffusion couple consisting of a multi-phase multi-component single-crystal Ni-based superalloy on one side and pure Ni on the other side. The flux of the fastest diffuser in the superalloy, Al, towards the pure Ni causes a strong flux of vacancies in the opposite direction. This directed flux of vacancies leads to morphologically instable growth of voids. Phase-field simulations are performed in two (2D) and three dimensions (3D) to understand these instabilities, and the results are compared with experimental observations obtained by synchrotron X-ray tomography. Finally, the simulation results are analyzed with respect to the Mullins–Sekerka linear stability criterion.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-81532-6