Performance Analysis of Multipurpose Refrigeration System (MRS) on Fishing Vessel

The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF) reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polish maritime research 2016-04, Vol.23 (2), p.48-56
Hauptverfasser: Ust, Y., Sinan Karakurt, A., Gunes, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF) reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP), exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability). According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502). The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32.
ISSN:2083-7429
2083-7429
DOI:10.1515/pomr-2016-0020