Hi-LASSO: High-performance python and apache spark packages for feature selection with high-dimensional data

High-dimensional LASSO (Hi-LASSO) is a powerful feature selection tool for high-dimensional data. Our previous study showed that Hi-LASSO outperformed the other state-of-the-art LASSO methods. However, the substantial cost of bootstrapping and the lack of experiments for a parametric statistical tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-12, Vol.17 (12), p.e0278570-e0278570
Hauptverfasser: Jo, Jongkwon, Jung, Seungha, Park, Joongyang, Kim, Youngsoon, Kang, Mingon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-dimensional LASSO (Hi-LASSO) is a powerful feature selection tool for high-dimensional data. Our previous study showed that Hi-LASSO outperformed the other state-of-the-art LASSO methods. However, the substantial cost of bootstrapping and the lack of experiments for a parametric statistical test for feature selection have impeded to apply Hi-LASSO for practical applications. In this paper, the Python package and its Spark library are efficiently designed in a parallel manner for practice with real-world problems, as well as providing the capability of the parametric statistical tests for feature selection on high-dimensional data. We demonstrate Hi-LASSO's outperformance with various intensive experiments in a practical manner. Hi-LASSO will be efficiently and easily performed by using the packages for feature selection. Hi-LASSO packages are publicly available at https://github.com/datax-lab/Hi-LASSO under the MIT license. The packages can be easily installed by Python PIP, and additional documentation is available at https://pypi.org/project/hi-lasso and https://pypi.org/project/Hi-LASSO-spark.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0278570