Design and Modelling of Urban Stormwater Management and Treatment Infrastructure for Communities in Wuse, Abuja

Effective stormwater management can be used to regulate water quantity and quality for environmental sustainability, flood control, pollution reduction and other advantages of civil engineering infrastructures. Pollution of the environment and contamination of water sources can emanate from improper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature environment and pollution technology 2024-03, Vol.23 (1), p.69-86
Hauptverfasser: Oyebode, O. J., Umar, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective stormwater management can be used to regulate water quantity and quality for environmental sustainability, flood control, pollution reduction and other advantages of civil engineering infrastructures. Pollution of the environment and contamination of water sources can emanate from improper stormwater management. This study used a small-scale model of rainwater harvesting to analyze the design and model of urban stormwater management and treatment infrastructure for the neighborhoods in Abuja. The water quality of the treated stormwater retrieved has improved as a result of the usage of memory foam, alum, and chlorine to filter out contaminants and pathogens. With the fictitious stormwater treatment model created for this study, average values of the physicochemical parameters were collected from the stormwater discharge after it had been filtered and treated. The use of potash alum has had a variety of effects on the water’s quality. From 697 mg.L-1 to 635 mg.L-1, the total dissolved solids dropped. The DO dropped from 5.87 mg.L-1 to 3.92 mg.L-1 as well. Additionally, the turbidity rose from 4.42 FNU to 4.58 FNU, and the salinity rose from 0.7 PSU to 1.44 PSU, respectively. pH decreases from 19.78 to 15.17 mg.L-1, BOD decreases from 8.35 to 6.51, and COD decreases from 2.55 to 1.9. Calcium hardness has decreased from 287 mg.L-1 to 265.83 mg.L-1. The conductivity increases marginally from 3.24 ms.cm-1 to 3.82 ms.cm-1. The Fe2+ and Zn2+ ions exhibit a little decrease from 0.143 mg.L-1 to 0.055 mg.L-1 and from 0.092 mg.L-1 to 0.045 mg.L-1, respectively. Due to inadequate or nonexistent drainage systems in the many states and villages throughout the country, stormwater run-off management and treatment in Nigeria have been a colossal failure. Effective stormwater management can be sustained by using legal and environmental laws.
ISSN:2395-3454
0972-6268
2395-3454
DOI:10.46488/NEPT.2024.v23i01.005