Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells
IR780 is a near-infrared fluorescent dye, which can be applied as a photosensitizer in photodynamic (PDT) and photothermal (PTT) therapies and as a biodistribution tracer in imaging techniques. We investigated the growth and migration inhibition and mechanism of death of breast tumor cells, MCF-7 an...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2022-01, Vol.145, p.112464-112464, Article 112464 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IR780 is a near-infrared fluorescent dye, which can be applied as a photosensitizer in photodynamic (PDT) and photothermal (PTT) therapies and as a biodistribution tracer in imaging techniques. We investigated the growth and migration inhibition and mechanism of death of breast tumor cells, MCF-7 and MDA-MB-231, exposed to polymeric nanocapsules (NC) comprising IR780 covalently linked to the biodegradable polymer PLA (IR-PLA) and IR780 physically encapsulated (IR780-NC) in vitro. Both types of NC had mean diameters around 120 nm and zeta potentials around −40 mV. IR-PLA-NC was less cytotoxic than IR780 NC to a non-tumorigenic mammary epithelial cell line, MCF-10A, which is an important aspect of selectivity. Free-IR780 was more cytotoxic than IR-PLA-NC for MCF-7 and MDA-MB-231 cells after illumination with a 808 nm laser. IR-PLA NC was effective to inhibit colony formation (50%) and migration (30–40%) for both cancer cell lines. MDA-MB-231 cells were less sensitive to all IR780 formulations compared to MCF-7 cells. Cell uptake was higher with IR-PLA-NC than with IR780-NC and free-IR780 in both cancer cell lines (p |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2021.112464 |