Effects of Human Deciduous Dental Pulp-Derived Mesenchymal Stem Cell-Derived Conditioned Medium on the Metabolism of HUVECs, Osteoblasts, and BMSCs

In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cells (Basel, Switzerland) Switzerland), 2022-10, Vol.11 (20), p.3222
Hauptverfasser: Kunimatsu, Ryo, Hiraki, Tomoka, Rikitake, Kodai, Nakajima, Kengo, Putranti, Nurul Aisyah Rizky, Abe, Takaharu, Ando, Kazuyo, Nakatani, Ayaka, Sakata, Shuzo, Tanimoto, Kotaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we assessed the effects of human deciduous dental pulp-derived mesenchymal stem cell-derived conditioned medium (SHED-CM) on the properties of various cell types. The effects of vascular endothelial growth factor (VEGF) in SHED-CM on the luminal architecture, proliferative ability, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) were determined. We also investigated the effects of SHED-CM on the proliferation of human-bone-marrow mesenchymal stem cells (hBMSCs) and mouse calvarial osteoblastic cells (MC3T3-E1) as well as the expression of , , and . The protein levels of ALP were examined using Western blot analysis. VEGF blockade in SHED-CM suppressed the proliferative ability and angiogenic potential of HUVECs, indicating that VEGF in SHED-CM contributes to angiogenesis. The culturing of hBMSCs and MC3T3-E1 cells with SHED-CM accelerated cell growth and enhanced mRNA expression of bone differentiation markers. The addition of SHED-CM enhanced ALP protein expression in hBMSCs and MT3T3-E1 cells compared with that of the 0% FBS group. Furthermore, SHED-CM promoted the metabolism of HUVECs, MC3T3-E1 cells, and hBMSCs. These findings indicate the potential benefits of SHED-CM in bone tissue regeneration.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells11203222