ZrB2/SiCN Thin-Film Strain Gauges for In-Situ Strain Detection of Hot Components

The in-situ strain/stress detection of hot components in harsh environments remains a challenging task. In this study, ZrB2/SiCN thin-film strain gauges were fabricated on alumina substrates by direct writing. The effects of ZrB2 content on the electrical conductivity and strain sensitivity of ZrB2/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-09, Vol.13 (9), p.1467
Hauptverfasser: Lin, Fan, Pan, Xiaochuan, Wu, Chao, Zeng, Yingjun, Chen, Guochun, Chen, Qinnan, Sun, Daoheng, Hai, Zhenyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in-situ strain/stress detection of hot components in harsh environments remains a challenging task. In this study, ZrB2/SiCN thin-film strain gauges were fabricated on alumina substrates by direct writing. The effects of ZrB2 content on the electrical conductivity and strain sensitivity of ZrB2/SiCN composites were investigated, and based on these, thin film strain gauges with high electrical conductivity (1.71 S/cm) and a gauge factor of 4.8 were prepared. ZrB2/SiCN thin-film strain gauges exhibit excellent static, cyclic strain responses and resistance stability at room temperature. In order to verify the high temperature performance of the ZrB2/SiCN thin-film strain gauges, the temperature-resistance characteristic curves test, high temperature resistance stability test and cyclic strain test were conducted from 25 °C to 600 °C. ZrB2/SiCN thin-film strain gauges exhibit good resistance repeatability and stability, and highly sensitive strain response, from 25 °C to 600 °C. Therefore, ZrB2/SiCN thin-film strain gauges provide an effective approach for the measurement of in-situ strain of hot components in harsh environments.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13091467