Molecular dynamics model of mechanophore sensors for biological force measurement

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2025-01, Vol.11 (1), p.e41178, Article e41178
Hauptverfasser: Mittal, Sumit, Wang, Rongsheng E., Ros, Robert, Ondrus, Alison E., Singharoy, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore. These sensors are characterized using a multiscale approach combining equilibrium and steered QM/MM molecular dynamics models to capture the chemical, mechanical, and conformational transitions underlying force activation thresholds on a nano Newton scale. We find that chemical modification of the mechanophore and variation of its biomolecular tethers can tune the rate-determining step for fluorophore release and adjust the mechanochemical activation barrier. The models offer a new molecular framework for calibrated, programmable biomolecular force reporting within the live-cell regime, opening new opportunities to study mechanical phenomena in biological systems.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e41178