A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis

Missing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-parametric method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC MEDICAL RESEARCH METHODOLOGY 2023-07, Vol.23 (1), p.161-161, Article 161
Hauptverfasser: Jahangiri, Mina, Kazemnejad, Anoshirvan, Goldfeld, Keith S, Daneshpour, Maryam S, Mostafaei, Shayan, Khalili, Davood, Moghadas, Mohammad Reza, Akbarzadeh, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Missing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-parametric method after imputing missing data using SI and MI was investigated using simulated and real data. Using different simulation scenarios derived from a real data set, we compared the performance of cross, trajectory mean, interpolation, copy-mean, and MI methods (27 approaches) to impute missing longitudinal data using parametric and non-parametric longitudinal models and the performance of the methods was assessed in real data. The real data included 3,645 participants older than 18 years within six waves obtained from the longitudinal Tehran cardiometabolic genetic study (TCGS). The data modeling was conducted using systolic and diastolic blood pressure (SBP/DBP) as the outcome variables and included predictor variables such as age, gender, and BMI. The efficiency of imputation approaches was compared using mean squared error (MSE), root-mean-squared error (RMSE), median absolute deviation (MAD), deviance, and Akaike information criteria (AIC). The longitudinal regression tree algorithm outperformed based on the criteria such as MSE, RMSE, and MAD than the linear mixed-effects model (LMM) for analyzing the TCGS and simulated data using the missing at random (MAR) mechanism. Overall, based on fitting the non-parametric model, the performance of the 27 imputation approaches was nearly similar. However, the SI traj-mean method improved performance compared with other imputation approaches. Both SI and MI approaches performed better using the longitudinal regression tree algorithm compared with the parametric longitudinal models. Based on the results from both the real and simulated data, we recommend that researchers use the traj-mean method for imputing missing values of longitudinal data. Choosing the imputation method with the best performance is widely dependent on the models of interest and the data structure.
ISSN:1471-2288
1471-2288
DOI:10.1186/s12874-023-01968-8