Monophonic and Polyphonic Wheezing Classification Based on Constrained Low-Rank Non-Negative Matrix Factorization
The appearance of wheezing sounds is widely considered by physicians as a key indicator to detect early pulmonary disorders or even the severity associated with respiratory diseases, as occurs in the case of asthma and chronic obstructive pulmonary disease. From a physician's point of view, mon...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (5), p.1661 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The appearance of wheezing sounds is widely considered by physicians as a key indicator to detect early pulmonary disorders or even the severity associated with respiratory diseases, as occurs in the case of asthma and chronic obstructive pulmonary disease. From a physician's point of view, monophonic and polyphonic wheezing classification is still a challenging topic in biomedical signal processing since both types of wheezes are sinusoidal in nature. Unlike most of the classification algorithms in which interference caused by normal respiratory sounds is not addressed in depth, our first contribution proposes a novel Constrained Low-Rank Non-negative Matrix Factorization (CL-RNMF) approach, never applied to classification of wheezing as far as the authors' knowledge, which incorporates several constraints (sparseness and smoothness) and a low-rank configuration to extract the wheezing spectral content, minimizing the acoustic interference from normal respiratory sounds. The second contribution automatically analyzes the harmonic structure of the energy distribution associated with the estimated wheezing spectrogram to classify the type of wheezing. Experimental results report that: (i) the proposed method outperforms the most recent and relevant state-of-the-art wheezing classification method by approximately 8% in accuracy; (ii) unlike state-of-the-art methods based on classifiers, the proposed method uses an unsupervised approach that does not require any training. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21051661 |