Approaches to mitigation of hydrogen sulfide during anaerobic digestion process – A review

Anaerobic digestion (AD) is the primary technology for energy production from wet biomass under a limited oxygen supply. Various wastes rich in organic content have been renowned for enhancing the process of biogas production. However, several other intermediate unwanted products such as hydrogen su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-09, Vol.9 (9), p.e19768-e19768, Article e19768
Hauptverfasser: Mutegoa, Eric, Sahini, Mtabazi G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anaerobic digestion (AD) is the primary technology for energy production from wet biomass under a limited oxygen supply. Various wastes rich in organic content have been renowned for enhancing the process of biogas production. However, several other intermediate unwanted products such as hydrogen sulfide, ammonia, carbon dioxide, siloxanes and halogens have been generated during the process, which tends to lower the quality and quantity of the harvested biogas. The removal of hydrogen sulfide from wastewater, a potential substrate for anaerobic digestion, using various technologies is covered in this study. It is recommended that microaeration would increase the higher removal efficiency of hydrogen sulfide based on a number of benefits for the specific method. The process is primarily accomplished by dosing smaller amounts of oxygen in the digester, which increases the system's oxidizing capacity by rendering the sulfate reducing bacteria responsible for converting sulfate ions to hydrogen sulfide inactive. This paper reviews physicochemical and biological methods that have been in place to eliminate the effects of hydrogen sulfide from wastewater treated anaerobically and future direction to remove hydrogen sulfide from biogas produced.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e19768