Sensor-Data-Driven Prognosis Approach of Liquefied Natural Gas Satellite Plant

This paper proposes a sensor-data-driven prognosis approach for the predictive maintenance of a liquefied natural gas (LNG) satellite plant. By using data analytics of sensors installed in the satellite plants, it is possible to predict the remaining time to refill the tank of the remote plants. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied system innovation 2020-09, Vol.3 (3), p.34
Hauptverfasser: Escobet, Antoni, Escobet, Teresa, Quevedo, Joseba, Molina, Adoración
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a sensor-data-driven prognosis approach for the predictive maintenance of a liquefied natural gas (LNG) satellite plant. By using data analytics of sensors installed in the satellite plants, it is possible to predict the remaining time to refill the tank of the remote plants. In the proposed approach, the first task of data validation and correction is presented in order to transform raw data into reliable validated data. Then, the second task presents two methods for the prognosis of gas consumption in real time and the forecast of remaining time to refill the tank of the plant. The obtained results with real satellite plants showed good performance for direct implementation in a predictive maintenance plan.
ISSN:2571-5577
2571-5577
DOI:10.3390/asi3030034