Geometric constraints on the space of N $$ \mathcal{N} $$ = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows

Abstract This is the second in a series of three papers on systematic analysis of rank 1 Coulomb branch geometries of four dimensional N $$ \mathcal{N} $$ = 2 SCFTs. In [1] we developed a strategy for classifying physical rank-1 CB geometries of N $$ \mathcal{N} $$ = 2 SCFTs. Here we show how to car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2018-02, Vol.2018 (2), p.1-77, Article 2
Hauptverfasser: Argyres, Philip C., Lotito, Matteo, Lü, Yongchao, Martone, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract This is the second in a series of three papers on systematic analysis of rank 1 Coulomb branch geometries of four dimensional N $$ \mathcal{N} $$ = 2 SCFTs. In [1] we developed a strategy for classifying physical rank-1 CB geometries of N $$ \mathcal{N} $$ = 2 SCFTs. Here we show how to carry out this strategy computationally to construct the Seiberg-Witten curves and one-forms for all the rank-1 SCFTs. Explicit expressions are given for all 28 cases, with the exception of the N f =4 su(2) gauge theory and the E n SCFTs which were constructed in [2, 3] and [4, 5].
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2018)002