Geometric constraints on the space of N $$ \mathcal{N} $$ = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows
Abstract This is the second in a series of three papers on systematic analysis of rank 1 Coulomb branch geometries of four dimensional N $$ \mathcal{N} $$ = 2 SCFTs. In [1] we developed a strategy for classifying physical rank-1 CB geometries of N $$ \mathcal{N} $$ = 2 SCFTs. Here we show how to car...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2018-02, Vol.2018 (2), p.1-77, Article 2 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This is the second in a series of three papers on systematic analysis of rank 1 Coulomb branch geometries of four dimensional N $$ \mathcal{N} $$ = 2 SCFTs. In [1] we developed a strategy for classifying physical rank-1 CB geometries of N $$ \mathcal{N} $$ = 2 SCFTs. Here we show how to carry out this strategy computationally to construct the Seiberg-Witten curves and one-forms for all the rank-1 SCFTs. Explicit expressions are given for all 28 cases, with the exception of the N f =4 su(2) gauge theory and the E n SCFTs which were constructed in [2, 3] and [4, 5]. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP02(2018)002 |