Relationship between percolation mechanism and pore characteristics of recycled permeable bricks based on X-ray computed tomography

The relationship between percolation mechanism and pore characteristics for recycled permeable bricks with different porosities is investigated in this study based on X-ray computed tomography (X-CT). Permeability coefficients are measured and some characteristics including size, amount, and distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews on advanced materials science 2021-01, Vol.60 (1), p.207-215
Hauptverfasser: Lian, Songsong, Meng, Tao, Song, Hongqi, Wang, Zhongjia, Li, Jiabin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between percolation mechanism and pore characteristics for recycled permeable bricks with different porosities is investigated in this study based on X-ray computed tomography (X-CT). Permeability coefficients are measured and some characteristics including size, amount, and distribution of the pore are analysed. The results show that the effective porosity and permeability coefficient of the recycled permeable bricks exhibit a linear relationship first and then a quadratic curve relationship, where the critical effective porosity is 12%. Meanwhile, we discovered that nonlinear channels in permeable bricks are larger and fewer compared with linear percolation channels, regardless of whether the percolation stage is linear or nonlinear. Additionally, when the area and number ratios of the linear and nonlinear percolation channels reached 80% and 10%, respectively, the overall percolation state of the permeable bricks changed from linear to nonlinear percolation. This research is helpful to improve the mechanical and percolation properties of recycled concrete bricks and promote the application of porous permeable material.
ISSN:1605-8127
1605-8127
DOI:10.1515/rams-2021-0022