Generating FAIR research data in experimental tribology

Solutions for the generation of FAIR (Findable, Accessible, Interoperable, and Reusable) data and metadata in experimental tribology are currently lacking. Nonetheless, FAIR data production is a promising path for implementing scalable data science techniques in tribology, which can lead to a deeper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2022-06, Vol.9 (1), p.1-11, Article 315
Hauptverfasser: Garabedian, Nikolay T., Schreiber, Paul J., Brandt, Nico, Zschumme, Philipp, Blatter, Ines L., Dollmann, Antje, Haug, Christian, Kümmel, Daniel, Li, Yulong, Meyer, Franziska, Morstein, Carina E., Rau, Julia S., Weber, Manfred, Schneider, Johannes, Gumbsch, Peter, Selzer, Michael, Greiner, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solutions for the generation of FAIR (Findable, Accessible, Interoperable, and Reusable) data and metadata in experimental tribology are currently lacking. Nonetheless, FAIR data production is a promising path for implementing scalable data science techniques in tribology, which can lead to a deeper understanding of the phenomena that govern friction and wear. Missing community-wide data standards, and the reliance on custom workflows and equipment are some of the main challenges when it comes to adopting FAIR data practices. This paper, first, outlines a sample framework for scalable generation of FAIR data, and second, delivers a showcase FAIR data package for a pin-on-disk tribological experiment. The resulting curated data, consisting of 2,008 key-value pairs and 1,696 logical axioms, is the result of (1) the close collaboration with developers of a virtual research environment, (2) crowd-sourced controlled vocabulary, (3) ontology building, and (4) numerous – seemingly – small-scale digital tools. Thereby, this paper demonstrates a collection of scalable non-intrusive techniques that extend the life, reliability, and reusability of experimental tribological data beyond typical publication practices.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-022-01429-9