Semiclassical approximation for the nonlocal multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation
Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $...
Gespeichert in:
Veröffentlicht in: | Kompʹûternye issledovaniâ i modelirovanie (Online) 2015-04, Vol.7 (2), p.205-219 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation are found in explicitform. |
---|---|
ISSN: | 2076-7633 2077-6853 |
DOI: | 10.20537/2076-7633-2015-7-2-205-219 |