Semiclassical approximation for the nonlocal multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation

Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kompʹûternye issledovaniâ i modelirovanie (Online) 2015-04, Vol.7 (2), p.205-219
Hauptverfasser: Levchenko, Evgeny Anatolevich, Trifonov, Andrey Yur'evich, Shapovalov, Aleksandr Vasilievich
Format: Artikel
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiclassical asymptotic solutions with accuracy $O(D^{N/2})$, $N\geqslant3$ are constructed for the multidimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation in the class of trajectory-concentrated functions. Using the symmetry operators a countable set of asymptotic solutions with accuracy $O(D^{3/2})$ is obtained. Asymptotic solutions of two-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation are found in explicitform.
ISSN:2076-7633
2077-6853
DOI:10.20537/2076-7633-2015-7-2-205-219