On GPW-Flat Acts
In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otime...
Gespeichert in:
Veröffentlicht in: | Categories and general algebraic structures with applications 2020-01, Vol.12 (1), p.25-42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otimes {}_{S}- $ preserves the embedding of the principal left ideal _{S}(Ss^n)$ into _{S}S$. We show that a right $S$-act $A_{S}$ is $GPW$-flat if and only if for every $s in S$ there exists a natural number $n = n_{(s, A_{S})} in mathbb{N}$ such that the corresponding $varphi$ is surjective for the pullback diagram $P(Ss^n, Ss^n, iota, iota, S)$, where $iota : {}_{S}(Ss^n) rightarrow {}_{S}S$ is a monomorphism of left $S$-acts. Also we give some general properties and a characterization of monoids for which this condition of their acts implies some other properties and vice versa. |
---|---|
ISSN: | 2345-5853 2345-5861 |
DOI: | 10.29252/CGASA.12.1.25 |