Interplays between cis - and trans -Acting Factors for Alternative Splicing in Response to Environmental Changes during Biological Invasions of Ascidians

Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the - and -a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-10, Vol.24 (19), p.14921
Hauptverfasser: Huang, Xuena, Li, Hanxi, Zhan, Aibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the - and -acting factors influencing AS variation remain unclear. Using the model invasive congeneric ascidians, , and , we compared their AS responses to environmental changes and explored the potential determinants. Our findings unveiled swift and dynamic AS changes in response to environmental challenges, and differentially alternative spliced genes (DASGs) were functionally enriched in transmembrane transport processes. Interestingly, both the prevalence and level of AS in were lower than those observed in . Furthermore, these two indices were higher under temperature stresses compared to salinity stresses in . All the observed patterns underscore the species-specific and environmental context-dependent AS responses to environmental challenges. The dissimilarities in genomic structure and exon/intron size distributions between these two species likely contributed to the observed AS variation. Moreover, we identified a total of 11 and 9 serine/arginine-rich splicing factors (SRSFs) with conserved domains and gene structures in the genomes of and , respectively. Intriguingly, our analysis revealed that all detected SRSFs did not exhibit prevalent AS regulations. Instead, we observed AS control over a set of genes related to splicing factors and spliceosome components. Altogether, our results elucidate species-specific and environmental challenge-dependent AS response patterns in closely related invasive ascidians. The identified splicing factors and spliceosome components under AS control offer promising candidates for further investigations into AS-mediated rapid responses to environmental challenges complementary to SRSFs.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241914921