Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs

Objective: MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis. Data Sources: Papers published in Englis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese medical journal 2016-10, Vol.129 (19), p.2365-2372
Hauptverfasser: Yang, Cui, Zheng, Si-Dao, Wu, Hong-Jin, Chen, Shao-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective: MicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis. Data Sources: Papers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms "microRNA", "miR", "transforming growth factor β", "tgf β", "mitogen-activated protein kinase", "mapk", "integrin", "p38", "c-Jun NH2-terminal kinase", "jnk", "extracellular signal-regulated kinase", "erk", and "fibrosis". Study Selection: Articles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis. Results: Recent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis, such as immune cell sensitization, effector cell activation, and extracellular matrix remodeling. Moreover, several important molecular signaling pathways involve in fibrosis, such as the transforming growth factor-beta (TGF-β) pathway, mitogen-activated protein kinase (MAPK) pathways, and the integrin pathway are regulated by miRNAs. Third, regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart, lung, liver, and kidney. Interestingly, the actions of many drugs on the human body are also induced by miRNAs. It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways, thereby protecting the structures and functions of different organs. Conclusions: miRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases.
ISSN:0366-6999
2542-5641
DOI:10.4103/0366-6999.190677