Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System
Cyclic prefixes in joint radar and communication systems based on Orthogonal Frequency Division Multiplexing (OFDM) and low probability of interception lead to weak radar echo masking on the battlefield. To address this problem, a low probability of interception waveform design scheme based on Filte...
Gespeichert in:
Veröffentlicht in: | Journal of radars = Lei da xue bao 2023-04, Vol.12 (2), p.287-296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclic prefixes in joint radar and communication systems based on Orthogonal Frequency Division Multiplexing (OFDM) and low probability of interception lead to weak radar echo masking on the battlefield. To address this problem, a low probability of interception waveform design scheme based on Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (FBMC-OQAM) is proposed in this paper. Mathematical models for the FBMC joint radar and communication waveform, target detection probability, and communication channel capacity are established. Under the radar and communication performance constraints required by the system, a joint optimization problem of minimizing the total transmitted power of the system is designed, and the subcarrier and power allocation scheme are optimized. Furthermore, the proposed algorithm can realize adaptive transmission where the parameters of the transmitting waveform can be optimally designed for the next pulse by utilizing the measured values of the current signal and the channel state information. Moreover, the feasibility and advantages of FBMC as the radar signal are analyzed based on the average ambiguity function. Theoretical analysis and simulation experiments show that the power allocation scheme proposed in this paper can effectively reduce the total transmitted power of the system, to achieve low interception performance compared with the equal power allocation. The FBMC waveform can effectively reduce the sidelobes caused by cyclic prefixes, which improves the radar resolution and information rate. |
---|---|
ISSN: | 2095-283X |
DOI: | 10.12000/JR22064 |