Segmentation of stunting, wasting, and underweight in Southeast Sulawesi using geographically weighted multivariate Poisson regression

The health profile of Southeast Sulawesi Province in 2021 shows that the prevalence of stunting is 11.69 %, wasting 5.89 % and underweight 7.67 %. This relatively high figure should be immediately reduced to zero because it greatly affects the quality of human resources. Cases of stunting, wasting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MethodsX 2024-06, Vol.12, p.102736-102736, Article 102736
Hauptverfasser: Fadmi, Fitri Rachmillah, Otok, Bambang Widjanarko, Kuntoro, Melaniani, Soenarnatalina, Sriningsih, Riry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The health profile of Southeast Sulawesi Province in 2021 shows that the prevalence of stunting is 11.69 %, wasting 5.89 % and underweight 7.67 %. This relatively high figure should be immediately reduced to zero because it greatly affects the quality of human resources. Cases of stunting, wasting and underweight are an iceberg phenomenon, especially in Southeast Sulawesi. Therefore, it is necessary to research the number of cases of stunting, wasting and underweight in Southeast Sulawesi using GWMPR. The research results show that there is a trivariate correlation between the number of cases of stunting, wasting and underweight. The GWMPR model provides better results in modeling the number of stunting, wasting and underweight cases than the MPR model. The models produced for each sub-district are different from each other based on the predictor variables that have a significant effect and the estimated parameter values ​​for each sub-district. The segmentation of the number of stunting cases consists of 21 regional groups with 10 significant predictor variables, while the number of wasting cases consists of 10 regional groups with 9 significant predictor variables, while the number of underweight cases consists of 37 regional groups with 11 significant predictor variables. Therefore, policies on stunting, wasting, and underweight should be based on local conditions. 3 important components of this study: 1. GWMPR is the development of GWPR model when there are 2 or more response variables that are correlated. 2. GWMPR is a spatial model that considers geography. 3. Application of GWMPR to the analysis of the number of stunting, wasting, and underweight in Southeast Sulawesi province. [Display omitted]
ISSN:2215-0161
2215-0161
DOI:10.1016/j.mex.2024.102736