On level line fluctuations of SOS surfaces above a wall

We study the low-temperature $(2+1)$ D solid-on-solid model on with zero boundary conditions and nonnegative heights (a floor at height $0$ ). Caputo et al. (2016) established that this random surface typically admits either $\mathfrak h $ or $\mathfrak h+1$ many nested macroscopic level line loops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2024-01, Vol.12, Article e91
Hauptverfasser: Caddeo, Patrizio, Kim, Yujin H., Lubetzky, Eyal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the low-temperature $(2+1)$ D solid-on-solid model on with zero boundary conditions and nonnegative heights (a floor at height $0$ ). Caputo et al. (2016) established that this random surface typically admits either $\mathfrak h $ or $\mathfrak h+1$ many nested macroscopic level line loops $\{\mathcal L_i\}_{i\geq 0}$ for an explicit $\mathfrak h\asymp \log L$ , and its top loop $\mathcal L_0$ has cube-root fluctuations: For example, if $\rho (x)$ is the vertical displacement of $\mathcal L_0$ from the bottom boundary point $(x,0)$ , then $\max \rho (x) = L^{1/3+o(1)}$ over . It is believed that rescaling $\rho $ by $L^{1/3}$ and $I_0$ by $L^{2/3}$ would yield a limit law of a diffusion on $[-1,1]$ . However, no nontrivial lower bound was known on $\rho (x)$ for a fixed $x\in I_0$ (e.g., $x=\frac L2$ ), let alone on $\min \rho (x)$ in $I_0$ , to complement the bound on $\max \rho (x)$ . Here, we show a lower bound of the predicted order $L^{1/3}$ : For every $\epsilon>0$ , there exists $\delta>0$ such that $\min _{x\in I_0} \rho (x) \geq \delta L^{1/3}$ with probability at least $1-\epsilon $ . The proof relies on the Ornstein–Zernike machinery due to Campanino–Ioffe–Velenik and a result of Ioffe, Shlosman and Toninelli (2015) that rules out pinning in Ising polymers with modified interactions along the boundary. En route, we refine the latter result into a Brownian excursion limit law, which may be of independent interest. We further show that in a $ K L^{2/3}\times K L^{2/3}$ box with boundary conditions $\mathfrak h-1,\mathfrak h,\mathfrak h,\mathfrak h$ (i.e., $\mathfrak h-1$ on the bottom side and $\mathfrak h$ elsewhere), the limit of $\rho (x)$ as $K,L\to \infty $ is a Ferrari–Spohn diffusion.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2024.91