Research on Least‐Square η ‐Hermitian Solutions of Split Quaternion Matrix Equations

In this article, we use the real representation matrix of the split quaternion matrix, vector operator, Kronecker product, and Moore–Penrose generalized inverse. We establish the least norm expression of the least‐square η ‐Hermitian solution and the least norm expression of the least‐square η ‐anti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2024-01, Vol.2024 (1)
Hauptverfasser: Zhang, Yang, Zhang, Xiaoda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we use the real representation matrix of the split quaternion matrix, vector operator, Kronecker product, and Moore–Penrose generalized inverse. We establish the least norm expression of the least‐square η ‐Hermitian solution and the least norm expression of the least‐square η ‐anti‐Hermitian solution on the split quaternion of the matrix equation A X B + C X D = E . The final solution expression is represented only by real matrices and real vectors. In the algorithm, only real number operations are involved, which avoids complex quaternion operations and greatly reduces the amount of computation. Finally, we use two examples to verify the effectiveness of the proposed algorithm.
ISSN:2314-4629
2314-4785
DOI:10.1155/2024/9713495