Determinants and inverses of circulant matrices with complex Fibonacci numbers
Let ℱ = circ (︀F* , F* , . . . , F* ︀ be the n×n circulant matrix associated with complex Fibonacci numbers F* , F* , . . . , F* . In the present paper we calculate the determinant of ℱ in terms of complex Fibonacci numbers. Furthermore, we show that ℱ is invertible and obtain the entries of the inv...
Gespeichert in:
Veröffentlicht in: | Special matrices 2015-04, Vol.3 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ℱ
= circ (︀F*
, F*
, . . . , F*
︀ be the n×n circulant matrix associated with complex Fibonacci numbers
F*
, F*
, . . . , F*
. In the present paper we calculate the determinant of ℱ
in terms of complex Fibonacci
numbers. Furthermore, we show that ℱ
is invertible and obtain the entries of the inverse of ℱ
in terms of
complex Fibonacci numbers. |
---|---|
ISSN: | 2300-7451 2300-7451 |
DOI: | 10.1515/spma-2015-0008 |