Determinants and inverses of circulant matrices with complex Fibonacci numbers

Let ℱ = circ (︀F* , F* , . . . , F* ︀ be the n×n circulant matrix associated with complex Fibonacci numbers F* , F* , . . . , F* . In the present paper we calculate the determinant of ℱ in terms of complex Fibonacci numbers. Furthermore, we show that ℱ is invertible and obtain the entries of the inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Special matrices 2015-04, Vol.3 (1)
Hauptverfasser: Altınışık, Ercan, Feyza Yalçın, N., Büyükköse, Şerife
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ℱ = circ (︀F* , F* , . . . , F* ︀ be the n×n circulant matrix associated with complex Fibonacci numbers F* , F* , . . . , F* . In the present paper we calculate the determinant of ℱ in terms of complex Fibonacci numbers. Furthermore, we show that ℱ is invertible and obtain the entries of the inverse of ℱ in terms of complex Fibonacci numbers.
ISSN:2300-7451
2300-7451
DOI:10.1515/spma-2015-0008