Preparation, Characterization, and In Vitro Sustained Release Profile of Resveratrol-Loaded Silica Aerogel

Silica aerogel, a kind of nanoporous material, is regarded as a desired drug carrier for its low toxicity, high specific surface area, and excellent biocompatibility. Using silica aerogel in a drug carrier may be an appropriate method to improve the performance of pure resveratrol. In this study, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-06, Vol.25 (12), p.2752
Hauptverfasser: Qin, Lili, He, Yiwei, Zhao, Xinyu, Zhang, Ting, Qin, Yao, Du, Ai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silica aerogel, a kind of nanoporous material, is regarded as a desired drug carrier for its low toxicity, high specific surface area, and excellent biocompatibility. Using silica aerogel in a drug carrier may be an appropriate method to improve the performance of pure resveratrol. In this study, resveratrol-loaded silica aerogel (RSA) as a drug delivery system was prepared by the sol-gel method. Before gelling, resveratrol was added into the hydrolyzed tetraethyl orthosilicate (TEOS) ethanol solution then dispersed by stir and ultrasound. The results showed that RSA has a high loading rate of 19% with low cost and excellent biocompatibility. The SEM images showed that silica aerogel wraps up outside the resveratrol. Sustained releasing effect could be observed in RSA after 1 h, while pure resveratrol did not display this. The release of RSA lasted for over 6 h, and the release amount reached over 90% and 80% in either simulated gastric fluid (pH = 2.0) or phosphate-buffered saline (pH = 7.4) at 37 °C. Preliminary in vitro toxicity test revealed RSA to be biocompatible and stable; and when coupled with the anti-inflammatory effects of resveratrol, showed good potential for osteoarthritis treatment.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25122752