Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery

A promising metal-organic complex, iron (Fe)-NTMPA 2 , consisting of Fe(III) chloride and nitrilotri-(methylphosphonic acid) (NTMPA), is designed for use in aqueous iron redox flow batteries. A full-cell testing, where a concentrated Fe-NTMPA 2 anolyte (0.67 M) is paired with a Fe-CN catholyte, demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-03, Vol.15 (1), p.2566-2566, Article 2566
Hauptverfasser: Nambafu, Gabriel S., Hollas, Aaron M., Zhang, Shuyuan, Rice, Peter S., Boglaienko, Daria, Fulton, John L., Li, Miller, Huang, Qian, Zhu, Yu, Reed, David M., Sprenkle, Vincent L., Li, Guosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A promising metal-organic complex, iron (Fe)-NTMPA 2 , consisting of Fe(III) chloride and nitrilotri-(methylphosphonic acid) (NTMPA), is designed for use in aqueous iron redox flow batteries. A full-cell testing, where a concentrated Fe-NTMPA 2 anolyte (0.67 M) is paired with a Fe-CN catholyte, demonstrates exceptional cycling stability over 1000 charge/discharge cycles, and noteworthy performances, including 96% capacity utilization, a minimal capacity fade rate of 0.0013% per cycle (1.3% over 1,000 cycles), high Coulombic efficiency and energy efficiency near 100% and 87%, respectively, all achieved under a current density of 20 mA·cm - ². Furthermore, density functional theory unveils two potential coordination structures for Fe-NTMPA 2 complexes, improving the understanding between the ligand coordination environment and electron transfer kinetics. When paired with a high redox potential Fe-Dcbpy/CN catholyte, 2,2′-bipyridine-4,4′-dicarboxylic (Dcbpy) acid and cyanide (CN) ligands, Fe-NTMPA 2 demonstrates a notably elevated cell voltage of 1 V, enabling a practical energy density of up to 9 Wh/L. Here, authors report an iron flow battery, using earth-abundant materials like iron, ammonia, and phosphorous acid. This work offers a solution to reduce materials cost and extend cycle life in energy storage applications for grid decarbonization.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45862-3