Nodal solutions for Neumann systems with gradient dependence
We consider the following convective Neumann systems: ( S ) { − Δ p 1 u 1 + | ∇ u 1 | p 1 u 1 + δ 1 = f 1 ( x , u 1 , u 2 , ∇ u 1 , ∇ u 2 ) in Ω , − Δ p 2 u 2 + | ∇ u 2 | p 2 u 2 + δ 2 = f 2 ( x , u 1 , u 2 , ∇ u 1 , ∇ u 2 ) in Ω , | ∇ u 1 | p 1 − 2 ∂ u 1 ∂ η = 0 = | ∇ u 2 | p 2 − 2 ∂ u 2 ∂ η on ...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2024-01, Vol.2024 (1), p.4-19, Article 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following convective Neumann systems:
(
S
)
{
−
Δ
p
1
u
1
+
|
∇
u
1
|
p
1
u
1
+
δ
1
=
f
1
(
x
,
u
1
,
u
2
,
∇
u
1
,
∇
u
2
)
in
Ω
,
−
Δ
p
2
u
2
+
|
∇
u
2
|
p
2
u
2
+
δ
2
=
f
2
(
x
,
u
1
,
u
2
,
∇
u
1
,
∇
u
2
)
in
Ω
,
|
∇
u
1
|
p
1
−
2
∂
u
1
∂
η
=
0
=
|
∇
u
2
|
p
2
−
2
∂
u
2
∂
η
on
∂
Ω
,
where Ω is a bounded domain in
R
N
(
N
≥
2
) with a smooth boundary
∂
Ω,
δ
1
,
δ
2
>
0
are small parameters,
η
is the outward unit vector normal to
∂
Ω,
f
1
,
f
2
:
Ω
×
R
2
×
R
2
N
→
R
are Carathéodory functions that satisfy certain growth conditions, and
Δ
p
i
(
1
<
p
i
<
N
,
i
=
1
,
2
) are the
p
-Laplace operators
Δ
p
i
u
i
=
div
(
|
∇
u
i
|
p
i
−
2
∇
u
i
)
for
u
i
∈
W
1
,
p
i
(
Ω
)
. To prove the existence of solutions to such systems, we use a subsupersolution method. We also obtain nodal solutions by constructing appropriate subsolution and supersolution pairs. To the best of our knowledge, such systems have not been studied yet. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-023-01814-2 |