Cerebellum's Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials
Since 1998, when Schmahmann first proposed the concept of the "cognitive affective syndrome" that linked cerebellar damage to cognitive and emotional impairments, a substantial body of literature has emerged. Anatomical, neurophysiological, and functional neuroimaging data suggest that the...
Gespeichert in:
Veröffentlicht in: | Brain sciences 2023-12, Vol.13 (12), p.1683 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since 1998, when Schmahmann first proposed the concept of the "cognitive affective syndrome" that linked cerebellar damage to cognitive and emotional impairments, a substantial body of literature has emerged. Anatomical, neurophysiological, and functional neuroimaging data suggest that the cerebellum contributes to cognitive functions through specific cerebral-cerebellar connections organized in a series of parallel loops. The aim of this paper is to review the current findings on the involvement of the cerebellum in selective cognitive functions, using a psychophysiological perspective with event-related potentials (ERPs), alone or in combination with non-invasive brain stimulation techniques. ERPs represent a very informative method of monitoring cognitive functioning online and have the potential to serve as valuable biomarkers of brain dysfunction that is undetected by other traditional clinical tools. This review will focus on the data on attention, executive functions, and time processing obtained in healthy subjects and patients with varying clinical conditions, thus confirming the role of ERPs in understanding the role of the cerebellum in cognition and exploring the potential diagnostic and therapeutic implications of ERP-based assessments in patients. |
---|---|
ISSN: | 2076-3425 2076-3425 |
DOI: | 10.3390/brainsci13121683 |