On-chip inter-modal Brillouin scattering

Brillouin nonlinearities—which result from coupling between photons and acoustic phonons—are exceedingly weak in conventional nanophotonic silicon waveguides. Only recently have Brillouin interactions been transformed into the strongest and most tailorable nonlinear interactions in silicon using a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-07, Vol.8 (1), p.15819-15819, Article 15819
Hauptverfasser: Kittlaus, Eric A., Otterstrom, Nils T., Rakich, Peter T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brillouin nonlinearities—which result from coupling between photons and acoustic phonons—are exceedingly weak in conventional nanophotonic silicon waveguides. Only recently have Brillouin interactions been transformed into the strongest and most tailorable nonlinear interactions in silicon using a new class of optomechanical waveguides that control both light and sound. In this paper, we use a multi-mode optomechanical waveguide to create stimulated Brillouin scattering between light-fields guided in distinct spatial modes of an integrated waveguide for the first time. This interaction, termed stimulated inter-modal Brillouin scattering, decouples Stokes and anti-Stokes processes to enable single-sideband amplification and dynamics that permit near-unity power conversion. Using integrated mode multiplexers to address separate optical modes, we show that circulators and narrowband filters are not necessary to separate pump and signal waves. We also demonstrate net optical amplification and Brillouin energy transfer as the basis for flexible on-chip light sources, amplifiers, nonreciprocal devices and signal-processing technologies. Here, Kittlaus et al . demonstrate stimulated inter-modal Brillouin scattering on-chip. Through this process, a Brillouin interaction couples light fields that propagate in distinct spatial modes of a Brillouin-active silicon waveguide, which may allow a variety of new processes in silicon photonics.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15819