Greenhouse Gas Conversion into Hydrocarbons and Oxygenates Using Low Temperature Barrier Discharge Plasma Combined with Zeolite Catalysts
Global warming occurs as a result of the build-up of greenhouse gases in the atmosphere, causing an increase in Earth’s average temperature. Two major greenhouse gases (CH4 and CO2) can be simultaneously converted into value-added chemicals and fuels thereby decreasing their negative impact on the c...
Gespeichert in:
Veröffentlicht in: | Gases (Basel) 2023-12, Vol.3 (4), p.165-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global warming occurs as a result of the build-up of greenhouse gases in the atmosphere, causing an increase in Earth’s average temperature. Two major greenhouse gases (CH4 and CO2) can be simultaneously converted into value-added chemicals and fuels thereby decreasing their negative impact on the climate. In the present work, we used a plasma-catalytic approach for the conversion of methane and carbon dioxide into syngas, hydrocarbons, and oxygenates. For this purpose, CuCe zeolite-containing catalysts were prepared and characterized (low-temperature N2 adsorption, XRF, XRD, CO2-TPD, NH3-TPD, TPR). The process of carbon dioxide methane reforming was conducted in a dielectric barrier discharge under atmospheric pressure and at low temperature (under 120 °C). It was found that under the studied conditions, the major byproducts of CH4 reforming are CO, H2, and C2H6 with the additional formation of methanol and acetone. The application of a ZSM-12 based catalyst was beneficial as the CH4 conversion increased and the total concentration of liquid products was the highest, which is related to the acidic properties of the catalyst. |
---|---|
ISSN: | 2673-5628 2673-5628 |
DOI: | 10.3390/gases3040012 |