Examining the Effects of Introducing and Combining Electric-Arc Furnace Slag and Ceramic Waste in a Single Self-Consolidating, High-Strength Concrete Mix

The purpose of this paper is to examine the effects of introducing waste materials sourced from factories in Kuwait as partial replacements of conventional concrete materials. Rejected ceramic products and unused electric-arc furnace slag were treated and partially replaced portions of coarse and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-07, Vol.10 (14), p.4844
Hauptverfasser: Soleimani, Sayed Mohamad, Alaqqad, Abdel Rahman, Jumaah, Adel, Majeed, Abdulaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to examine the effects of introducing waste materials sourced from factories in Kuwait as partial replacements of conventional concrete materials. Rejected ceramic products and unused electric-arc furnace slag were treated and partially replaced portions of coarse and fine aggregates, and the possibility of partially replacing cement was also examined. Initial results showed that all aggregate sizes can be replaced with either of the waste materials without compromising the concrete’s rheological properties or compressive strength. Additionally, pulverized ceramic powder was shown to improve the compressive strength of mortar cube samples. Finally, the two waste materials were combined in hybrid mixes that aimed to have the highest utilization of waste materials while maintaining (if not improving) the properties of a previously established benchmark self-consolidating concrete (SCC) mix. The results of this study show that waste materials sourced from landfills in Kuwait can be repurposed to replace portions of conventional construction materials in a self-consolidating, high-performance concrete mix with significantly better mechanical properties and higher compressive strength than that shown by a benchmark mix.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10144844