A Review of Epidemic Forecasting Using Artificial Neural Networks

Background and aims: Since accurate forecasts help inform decisions for preventive health-care intervention and epidemic control, this goal can only be achieved by making use of appropriate techniques and methodologies. As much as forecast precision is important, methods and model selection procedur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of epidemiologic research 2019-09, Vol.6 (3), p.132-143
Hauptverfasser: Manliura Datilo, Philemon, Ismail, Zuhaimy, Dare, Jayeola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and aims: Since accurate forecasts help inform decisions for preventive health-care intervention and epidemic control, this goal can only be achieved by making use of appropriate techniques and methodologies. As much as forecast precision is important, methods and model selection procedures are critical to forecast precision. This study aimed at providing an overview of the selection of the right artificial neural network (ANN) methodology for the epidemic forecasts. It is necessary for forecasters to apply the right tools for the epidemic forecasts with high precision. Methods: It involved sampling and survey of epidemic forecasts based on ANN. A comparison of performance using ANN forecast and other methods was reviewed. Hybrids of a neural network with other classical methods or meta-heuristics that improved performance of epidemic forecasts were analysed. Results: Implementing hybrid ANN using data transformation techniques based on improved algorithms, combining forecast models, and using technological platforms enhance the learning and generalization of ANN in forecasting epidemics. Conclusion: The selection of forecasting tool is critical to the precision of epidemic forecast; hence, a working guide for the choice of appropriate tools will help reduce inconsistency and imprecision in forecasting epidemic size in populations. ANN hybrids that combined other algorithms and models, data transformation and technology should be used for an epidemic forecast.
ISSN:2383-4366
2383-4366
DOI:10.15171/ijer.2019.24