Algoritmo incremental de agrupamiento con traslape para el procesamiento de grandes colecciones de datos
Existen diversos problemas en el Reconocimiento de Patrones y en la Minería de Datos que, por su naturaleza, consideran que los objetos pueden pertenecer a más de una clase o grupo. DClustR es un algoritmo dinámico de agrupamiento con traslape que ha mostrado, en tareas de agrupamiento de documentos...
Gespeichert in:
Veröffentlicht in: | GECONTEC 2022-12, Vol.3 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existen diversos problemas en el Reconocimiento de Patrones y en la Minería de Datos que, por su naturaleza, consideran que los objetos pueden pertenecer a más de una clase o grupo. DClustR es un algoritmo dinámico de agrupamiento con traslape que ha mostrado, en tareas de agrupamiento de documentos, el mejor balance entre calidad de los grupos y eficiencia entre los algoritmos dinámicos de agrupamiento con traslape reportados en la literatura. A pesar de obtener buenos resultados, DClustR puede ser poco útil en aplicaciones que trabajen con grandes colecciones de documentos, debido a que tiene una complejidad computacional O(n2) y a la cantidad de memoria que utiliza para el procesamiento de las colecciones. En este trabajo se presenta una versión paralela basada en GPU del algoritmo DClustR, llamada CUDA-DClus, para mejorar la eficiencia de DClustR en aplicaciones que lidien con largas colecciones de documentos. Los experimentos fueron realizados sobre varias colecciones estándares de documentos y en ellos se muestra el buen rendimiento de CUDA DClus en términos de eficiencia y consumo de memoria. |
---|---|
ISSN: | 2255-5684 |
DOI: | 10.5281/zenodo.7467480 |