Surface-redox sodium-ion storage in anatase titanium oxide

Sodium-ion storage technologies are promising candidates for large-scale grid systems due to the abundance and low cost of sodium. However, compared to well-understood lithium-ion storage mechanisms, sodium-ion storage remains relatively unexplored. Herein, we systematically determine the sodium-ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-01, Vol.14 (1), p.7-7, Article 7
Hauptverfasser: Wei, Qiulong, Chang, Xiaoqing, Butts, Danielle, DeBlock, Ryan, Lan, Kun, Li, Junbin, Chao, Dongliang, Peng, Dong-Liang, Dunn, Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium-ion storage technologies are promising candidates for large-scale grid systems due to the abundance and low cost of sodium. However, compared to well-understood lithium-ion storage mechanisms, sodium-ion storage remains relatively unexplored. Herein, we systematically determine the sodium-ion storage properties of anatase titanium dioxide (TiO 2 (A)). During the initial sodiation process, a thin surface layer (~3 to 5 nm) of crystalline TiO 2 (A) becomes amorphous but still undergoes Ti 4+ /Ti 3+ redox reactions. A model explaining the role of the amorphous layer and the dependence of the specific capacity on the size of TiO 2 (A) nanoparticles is proposed. Amorphous nanoparticles of ~10 nm seem to be optimum in terms of achieving high specific capacity, on the order of 200 mAh g −1 , at high charge/discharge rates. Kinetic studies of TiO 2 (A) nanoparticles indicate that sodium-ion storage is due to a surface-redox mechanism that is not dependent on nanoparticle size in contrast to the lithiation of TiO 2 (A) which is a diffusion-limited intercalation process. The surface-redox properties of TiO 2 (A) result in excellent rate capability, cycling stability and low overpotentials. Moreover, tailoring the surface-redox mechanism enables thick electrodes of TiO 2 (A) to retain high rate properties, and represents a promising direction for high-power sodium-ion storage. Sodium ion storage remains relatively unexplored in comparison with well-understood lithium ion storage mechanisms. Here, the authors systematically investigate the surface-redox sodium ion storage properties of anatase titanium dioxide, which delivers excellent rate capability, cycling stability and low overpotentials.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-35617-3