An Inference-based Prognostic Framework for Health Management of Automotive Systems

This paper presents a unified data-driven prognostic framework that combines failure time data, static parameter data and dynamic time-series data. The framework employs proportional hazards model and a soft dynamic multiple fault diagnosis algorithm for inferring the degraded state trajectories of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of prognostics and health management 2020-11, Vol.7 (2)
Hauptverfasser: Sankavaram, Chaitanya, Kodali, Anuradha, Pattipati, Krishna, Singh, Satnam, Zhang, Yilu, Salman, Mutasim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a unified data-driven prognostic framework that combines failure time data, static parameter data and dynamic time-series data. The framework employs proportional hazards model and a soft dynamic multiple fault diagnosis algorithm for inferring the degraded state trajectories of components and to estimate their remaining useful life times. The framework takes into account the cross-subsystem fault propagation, a case prevalent in any networked and embedded system. The key idea is to use Cox proportional hazards model to estimate the survival functions of error codes and symptoms (probabilistic test outcomes/prognostic indicators) from failure time data and static parameter data, and use them to infer the survival functions of components via soft dynamic multiple fault diagnosis algorithm. The average remaining useful life and its higher-order central moments (e.g., variance, skewness, kurtosis) can be estimated from these component survival functions. The framework is demonstrated on datasets derived from two automotive systems, namely hybrid electric vehicle regenerative braking system, and an electronic throttle control subsystem simulator. Although the proposed framework is validated on automotive systems, it has the potential to be applicable to a wide variety of systems, ranging from aerospace systems to buildings to power grids.
ISSN:2153-2648
2153-2648
DOI:10.36001/ijphm.2016.v7i2.2362