Artificial Intelligence Algorithms and Their Current Role in the Identification and Comparison of Gleason Patterns in Prostate Cancer Histopathology: A Comprehensive Review

The development of the Gleason grading system has proven to be an irreplaceable tool in prostate cancer diagnostics within urology. Despite the advancements and developments in diagnostics, there remains a discrepancy in the grading process among even the most experienced pathologists. AI algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostics (Basel) 2024-09, Vol.14 (19), p.2127
Hauptverfasser: Khalid, Usman, Gurung, Jasmin, Doykov, Mladen, Kostov, Gancho, Hristov, Bozhidar, Uchikov, Petar, Kraeva, Maria, Kraev, Krasimir, Doykov, Daniel, Doykova, Katya, Valova, Siyana, Chervenkov, Lyubomir, Tilkiyan, Eduard, Eneva, Krasimira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of the Gleason grading system has proven to be an irreplaceable tool in prostate cancer diagnostics within urology. Despite the advancements and developments in diagnostics, there remains a discrepancy in the grading process among even the most experienced pathologists. AI algorithms have demonstrated potential in detecting cancer and assigning Gleason grades, offering a solution to the issue of significant variability among pathologists' evaluations. Our paper explores the evolving role of AI in prostate cancer histopathology, with a key focus on outcomes and the reliability of various AI algorithms for Gleason pattern assessment. We conducted a non-systematic review of the published literature to examine the role of artificial intelligence in Gleason pattern diagnostics. The PubMed and Google Scholar databases were searched to gather pertinent information about recent advancements in artificial intelligence and their impact on Gleason patterns. We found that AI algorithms are increasingly being used to identify Gleason patterns in prostate cancer, with recent studies showing promising advancements that surpass traditional diagnostic methods. These findings highlight AI's potential to be integrated into clinical practice, enhancing pathologists' workflows and improving patient outcomes. The inter-observer variability in Gleason grading has seen an improvement in efficiency with the implementation of AI. Pathologists using AI have reported successful outcomes, demonstrating its effectiveness as a supplementary tool. While some refinements are still needed before AI can be fully implemented in clinical practice, its positive impact is anticipated soon.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics14192127