Phase Error Reduction for a Structured-Light 3D System Based on a Texture-Modulated Reprojection Method

Fringe projection profilometry (FPP), with benefits such as high precision and a large depth of field, is a popular 3D optical measurement method widely used in precision reconstruction scenarios. However, the pixel brightness at reflective edges does not satisfy the conditions of the ideal pixel-wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-04, Vol.24 (7), p.2075
Hauptverfasser: Shi, Chenbo, Qin, Zheng, Hu, Xiaowei, Zhu, Changsheng, Mo, Yuanzheng, Li, Zelong, Yan, Shaojia, Yu, Yue, Zang, Xiangteng, Zhang, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fringe projection profilometry (FPP), with benefits such as high precision and a large depth of field, is a popular 3D optical measurement method widely used in precision reconstruction scenarios. However, the pixel brightness at reflective edges does not satisfy the conditions of the ideal pixel-wise phase-shifting model due to the influence of scene texture and system defocus, resulting in severe phase errors. To address this problem, we theoretically analyze the non-pixel-wise phase propagation model for texture edges and propose a reprojection strategy based on scene texture modulation. The strategy first obtains the reprojection weight mask by projecting typical FPP patterns and calculating the scene texture reflection ratio, then reprojects stripe patterns modulated by the weight mask to eliminate texture edge effects, and finally fuses coarse and refined phase maps to generate an accurate phase map. We validated the proposed method on various texture scenes, including a smooth plane, depth surface, and curved surface. Experimental results show that the root mean square error (RMSE) of the phase at the texture edge decreased by 53.32%, proving the effectiveness of the reprojection strategy in eliminating depth errors at texture edges.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24072075