Metric quasiconformality and Sobolev regularity in non-Ahlfors regular spaces

Given a homeomorphism between -dimensional spaces , we show that satisfying the metric definition of quasiconformality outside suitable exceptional sets implies that belongs to the Sobolev class , where , and also implies one direction of the geometric definition of quasiconformality. Unlike previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and Geometry in Metric Spaces 2024-04, Vol.12 (1), p.554-577
Hauptverfasser: Lahti, Panu, Zhou, Xiaodan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a homeomorphism between -dimensional spaces , we show that satisfying the metric definition of quasiconformality outside suitable exceptional sets implies that belongs to the Sobolev class , where , and also implies one direction of the geometric definition of quasiconformality. Unlike previous results, we only assume a pointwise version of Ahlfors -regularity, which in particular enables various weighted spaces to be included in the theory. Notably, even in the classical Euclidean setting, we are able to obtain new results using this approach. In particular, in spaces including the Carnot groups, we are able to prove the Sobolev regularity without the strong assumption of the infinitesimal distortion belonging to
ISSN:2299-3274
2299-3274
DOI:10.1515/agms-2024-0001