Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites

The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-09, Vol.10 (1), p.4176-19, Article 4176
Hauptverfasser: Holdgaard, Søs Grønbæk, Cianfanelli, Valentina, Pupo, Emanuela, Lambrughi, Matteo, Lubas, Michal, Nielsen, Julie C., Eibes, Susana, Maiani, Emiliano, Harder, Lea M., Wesch, Nicole, Foged, Mads Møller, Maeda, Kenji, Nazio, Francesca, de la Ballina, Laura R., Dötsch, Volker, Brech, Andreas, Frankel, Lisa B., Jäättelä, Marja, Locatelli, Franco, Barisic, Marin, Andersen, Jens S., Bekker-Jensen, Simon, Lund, Anders H., Rogov, Vladimir V., Papaleo, Elena, Lanzetti, Letizia, De Zio, Daniela, Cecconi, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity. Centrosomes drive mitotic spindle formation and chromosome segregation. Here, the authors show that centrosome stability is regulated by selective autophagic degradation of centriolar satellite components in a process they term doryphagy, connecting autophagy and chromosomal integrity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12094-9