Predictive Management Algorithm for Controlling PV-Battery Off-Grid Energy System

This paper introduces an energy management strategy for an off-grid hybrid energy system. The hybrid system consists of a photovoltaic (PV) module, a LiFePO4 battery pack coupled with a Battery Management System (BMS), a hybrid solar inverter, and a load management control unit. A Long Short-Term Me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (19), p.6427
Hauptverfasser: Alnejaili, Tareq, Labdai, Sami, Chrifi-Alaoui, Larbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces an energy management strategy for an off-grid hybrid energy system. The hybrid system consists of a photovoltaic (PV) module, a LiFePO4 battery pack coupled with a Battery Management System (BMS), a hybrid solar inverter, and a load management control unit. A Long Short-Term Memory network (LSTM)-based forecasting strategy is implemented to predict the available PV and battery power. The learning data are extracted from an African country with a tropical climate, which is very suitable for PV power applications. Using LSTM as a prediction method significantly increases the efficiency of the forecasting. The main objective of the proposed strategy is to control the different loads according to the forecasted energy availability of the system and the forecasted battery state of charge (SOC). The proposed management algorithm and the system are tested using Matlab/Simulink software. A comparative study demonstrates that the reduction in the energy deficit of the system is approximately 53% compared to the system without load management. In addition to this, the reliability of the system is improved as the loss of power supply probability (LPSP) decreases from 5% to 3%.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21196427